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1 Team

1.1 Team Members

● Austin Buller
● Kelly Jacobson
● Jacob Kinser
● Samuel Moore
● William Sengstock
● Dan Vasudevan
● Zachary Witte

1.2 Required Skill Sets for Your Project

● Apply knowledge of mathematics, science, and engineering.
● Should identify, formulate, and solve engineering problems.
● Optimal communication skills.
● Knowledge of coding languages and practices.
● Experience with Python, Jupyter Notebooks, and GitHub

1.3 Skill Sets covered by the Team

● Austin Buller - Covers all skills
● Kelly Jacobson - Covers all skills
● Jacob Kinser - Covers all skills
● Samuel Moore - Covers all skills
● William Sengstock - Covers all skills
● Dan Vasudevan - Covers all skills
● Zachary Witte - Covers all skills

1.4 Project Management Style Adopted by the team

We used a waterfall project management style. This was the best style for the project because
each week we built on our knowledge and the feedback from our client.
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1.5 Initial Project Management Roles

William Sengstock - Team Leader

Kelly Jacobson - Team Organization

Jacob Kinser - Component Design

Zachary Witte - Component Design

Samuel Moore - Component Design

Dan Vasudevan - Component Design

Austin Buller - Component Design

2 Introduction
2.1 Problem Statement

Our project was focused on researching the application of Natural Language Processing
techniques to software documentation. The objective was to improve Part of Speech (POS)
tagging to make information mining more effective when applied to software languages. Current
NLP models are used for English and other natural languages. We wanted to apply these models
to software languages like Java, Python, C, etc. and combine both strategies to effectively
analyze software documentation containing both natural language and software language.

2.2 Requirements & Constraints

Research Requirements/Constraints:

● Data pre-processing techniques
○ Stemming
○ Lemmatization
○ Tokenization

● Word vectorization
○ Skip-Gram
○ Continuous Bag of Words (CBOW)

● Word embedding and word clustering
● Algorithms

○ Gradient Boosting
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○ Random Forests
● Supervised /unsupervised Learning

○ Clustering algorithms
○ Neural Networks

● Existing POS tagging models
○ NLTK
○ SpaCy
○ BERT
○ StanfordNLP
○ Term Frequency - Inverse Document Frequency (TF-IDF)

● Existing Code-Understanding Models
○ CuBERT
○ CodeBERT

● Code Tokenizers
○ CuBERT Tokenizer
○ HuggingFace WordPiece and BPE Tokenizers
○ Python Tokenizer

● Each member of the project is expected to research on their own and cite credible sources

Programming Requirements/Constraints:

● Models will be written in Python using Jupyter Notebook (constraint)
● Finetune CodeBERT with Software Documentation

○ Preprocess Software Documentation dataset to fit CodeBERT’s structure
○ Fine-tune CodeBERT model with given Software Documentation dataset
○ Create visual metrics that display the accuracy of the newly fine-tuned model.

● Data used for research will come from approved sources, such as www.kaggle.com,
GitHub pages, and those given by the client.

● Dataset must be processable by CodeBERT
● Fine Tuned model should be transferable to other users.
● Evaluate the performance of each model compared to a manual review.

2.3 Engineering Standards

● ISO-IEC 9001: Quality Management
○ Helps ensure quality throughout the project, as well as continuous improvement

● ISO-IEC 830: Software Requirements Specifications
○ Influences the structure of the project, along with communication between users

● ISO-IEC 12207: Software Life Cycle Processes

http://www.kaggle.com
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○ Influences project design, maintains product throughout stages

2.4 Intended Users and Uses

Our end goal for this project is to improve natural language processes on software
documentation. Our project will directly benefit people researching NLP, including our client,
and will be most useful as a reference for other projects. Our research will be the basis of other
programs and projects that use POS tagging for software documentation in the long run. For
example, a search engine for software documents would utilize POS tagging to identify similar
documents. This could help a researcher looking for Python documentation find relevant
information.  Another example is searching for similar code blocks across various documents. It
would also be beneficial to someone inheriting a project who would use the same NLP processes
we research to better understand their project. There are many possible uses of NLP and POS as
applied to software documentation. Our results will become a basis for future progress by
experimenting with different word embeddings, algorithms, etc.

3 Project Design

3.1 Project Evolution

Our project has evolved immensely since CPRE 491. Throughout 491, our team
conducted many different experiments regarding Natural Language Processing and Part of
Speech tagging with software documentation. These experiments consisted of using and
analyzing the performance of existing models like spaCy, Natural Language Toolkit (NLTK),
and StanfordNLP.; we also attempted to train models from scratch, which we decided to stray
away from. Our team ultimately found those models to be very helpful regarding POS tagging
natural language text, but not so much for software documentation. For this semester, instead of
disregarding the information we learned and the results we came to in 491, we decided to use it
to our advantage. Our team discovered CodeBERT, a pre-trained model for programming
languages and natural language. After experimenting and reading about codeBert, we decided
that to take the pre-trained CodeBERT model and fine tune it with data of our own to achieve a
model that reaches an accuracy higher than either the natural language processors or CodeBERT
itself. This is where the research and experimentation conducted in 491 became very helpful. To
finetune CodeBERT, we needed a large amount of software data that already had accurate POS
tags. We were introduced to the Python Tokenizer that could tag most of the text in software, but
needed to be customized, which we did manually and programmatically. This allowed us to
finetune our codeBert model on data, ultimately making the model better understand how to POS
tag software documentation. Overall, our project evolved from a group of experiments and
abundant research to a real, fine-tuned model that utilized the results and information gathered in
CPRE 491.
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3.2 Security Concerns

Our project is research-focused and does not include any sensitive data or create opportunities
for malicious use. Our final deliverable is a python program. The only variable input is the
dataset, and the dataset we used was open source. There are no security or safety concerns with
our project.

3.3 Implementation Details

Since our project relied heavily on analyzing code, our group decided to use the BERT
model, CodeBERT. This is because CodeBERT is already pre-trained on code and would provide
us a good foundation to fine tune for our specific purpose. For the CodeBERT model
implementation, we used BertForSequenceClassification. This is because we were training the
model to predict the tag for each input. We then trained and tested the model on software
documentation improve model accuracy.

For the data-processing steps of tokenizing the raw data file, we used the standard Python
Tokenizer that is part of the python tokenize library. This tokenizer is made to find tokens in
python source code, which makes it perfect for finding tokens in software documentation. We
chose a code-understanding tokenizer over the natural language tokenizers (NLTK, SpaCy, etc.)
because the challenge is not understanding natural language; the challenge is understanding both
natural language and source code. Acode-understanding tokenizer is the best choice. In
Appendix I, under the Different Tokenizers section, we talk about why we chose the Python
Tokenizer over other code-understanding tokenizers.

4  Testing

4.1 Integration Testing

Our individual modules included pre-processing data, tokenization, model training, and
evaluation. Since different modules depend on other modules’ outputs as their input, these
modules were expected to all run together and produce the desired result. As we were testing
different implementations for each module, integration testing was important to ensure our
system still produced the correct results. The tool used for integration testing was Python. This is
demonstrated in our final deliverable as it is a combination of multiple modules created
throughout the semester.
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4.2 System Testing

Our system-level testing strategy was to test the end-to-end code of the model. This
means that we checked if each step from importing data to outputting accuracy of the NLP model
worked as expected. The integration tests validated that data was being fed into the model. With
system testing, we had to assess the accuracy of POS tagging and our predictive model
altogether, and how it fairs against software documentation. This process will also ensure that
our code is written efficiently in terms of runtime and that each part of the code is commented
out and well explained. Another aspect of this testing strategy was to ensure that the IDE works
as expected. We quickly learned that Google Colab does not allocate enough memory for our
model so we did all our training and evaluation on Jupyter Notebook.

4.3 Acceptance Testing

Team members demonstrated that the design requirements were met by showing our
client how we adapted software documentation to the various word embeddings. Through
communicating with one another and meeting at our weekly times, our clients gave us feedback
on whether we were on track or not. We involved our client in the acceptance testing by
showing them our progress with training our models. Each week our client reviewed our work
and gave us the next set of goals to work on for the next time we met.
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4.4 Results

We were able to achieve an 84% accuracy with Part of Speech tagging software
documentation.
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Appendix

5 Appendix Ⅰ: Operation Manual

5.1 Step 1: Dataset Processing

First, we must obtain a software documentation dataset that meets the model requirements.
Software documentation is text that contains source code, natural language, and code comments.
The model is trained on this type of dataset, so it is vital that it is tested on data of the same type.
CodeBERT requires the dataset to be formatted so that it has the original “text” of the dataset and
the corresponding “label”. Here is an example of the “text” file:

And here is an example of a “label” file:

The labels corresponding to the text were found using our modified Python Tokenizer. The Final
POS Tags list identifies all possible POS labels for the tokens and the most common pieces of
text that will be assigned these labels. Part of data-processing involves taking the software
documentation text and using the modified Python Tokenizer to find these labels. Then, the
original dataset is split into the text file and the label file for the CodeBERT model to read.

5.2 Step 2: Tokenization

Next we have to tokenize the data set prior to training the model with it. Right now the dataset is
split into a test and train dataset. You will need to put this split dataset into the RobertaTokenizer
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so the CodeBERT model understands it for training. Here is how that is done in our final
deliverable:

5.3 Step 3: Training and Evaluation

The next step is to take the tokenized data and train the model on it. To do this you must create a
Trainer object that you need to import from the transformers library. In the trainer object there
are a few parameters you must pass in. First, you need to pass in the training and testing datasets
that you split up and tokenized in the previous step. The testing dataset will later be used for
evaluation. Second, you must create a model object and pass in an instance of the RobertaModel.
Next, you need to pass in a compute_metrics method which is what the model will use to
evaluate the accuracy during the evaluation phase. And finally you need to pass in arguments
you would like to tweak for training. To train the data simply run Trainer.train(). And to evaluate
the accuracy of your model run Trainer.evaluate(). The evaluate() method should return metrics
on how accurate the model is based on the compute_metrics method you created.

5.4 Step 4: Load/Save Deep Learning Model

Once you have trained and evaluated your model, you will want to save it so that you can use it
in the future on different data. To save the model you need to run the method torch.save(). And if
you want to load that saved model you can use the torch.load() method.
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6 Appendix Ⅱ: Alternative/Other Initial Versions

6.1 Training CodeBERT from scratch:

In the early stages of creating our model, we were going to attempt to train CodeBERT
from scratch. After getting the model created we determined that we were not able to train it on
our personal computers and we were then given access to run our model on pronto. Pronto
allowed us to allocate the necessary resources that our model would require to train. We quickly
noticed that this would not be a viable option as the script to run our model was given low
priority (noted in the picture below, netid: jkinser). Our estimated time for the script to run was
one week. This is significant because we would be training the model on multiple sets of data
over the course of the semester. From here, our group, along with our advisors felt we should
finetune the existing model of CodeBERT instead of training from scratch. We felt this would
still be beneficial to our project because CodeBERT is already pre-trained on code. The notebook
for this model is located in our Github repository under the folder CodeBERTfromScratch

Screenshot of queue (One week wait):

6.2 Different tokenizers:

In the process of developing this project, we considered several different tokenizers to
use with our model. We eventually settled on using the python tokenizer and making some
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modifications to tailor it to our needs. Some tokenizers we looked at before include CuBERT and
a couple of HuggingFace tokenizers.

CuBERT is a Google research project, based on the BERT model. BERT is a language
model for natural language processing, using machine learning. CuBERT is a language model
intended to be used for understanding code. The concept is very similar to our project so we
thought it would be a good idea to include in our model. Unfortunately, CuBERT is extremely
hard to use. While it is available to download from GitHub, CuBERT is extremely complex and
outside the bounds of our team’s knowledge. A few members of our team spent multiple weeks
just trying to get a CuBERT example model to run and were unsuccessful. We decided it was not
worth our time and moved on to other tokenizers.

There were two HuggingFace tokenizers we looked at. One was a WordPiece tokenizer,
and the other was based on Byte Pair Encoding. These are the same types of tokenizers used by
the BERT model. We found that when we tried tokenizing python source code with these
tokenizers, they did not produce meaningful results.

We finally decided to use the standard Python Tokenizer. This tokenizer is made
specifically for identifying tokens in python source code. Our project was meant to be applied to
any software documentation containing any code language, but we decided Python was the best
starting point. The tokenizer was also easy to use and easy to modify to fit our needs.

7 Appendix Ⅲ: Other Considerations
This senior design project was a great learning experience for each of our team members. Prior
to last semester, none of us had ever worked with any machine learning concepts. However, after
we started this project we felt like we picked up a new skill each week. Here are a few of the
main technical skills we obtained from this project:

1. Python Data Processing Tools
a. Numpy
b. Matplotlib
c. Pandas
d. scikit-learn

2. Machine Learning Libraries
a. Pytorch
b. Hugging Face
c. Keras
d. Codebert

3. Tokenizers
a. Python Tokenizer
b. AutoTokenizer

4. NLP Software
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a. NLTK
b. Spacy
c. Stanford NLP

8 Appendix IV: Code

8.1 Github Repository:

Our complete notebook, along with models and other modifications can be found on our teams
github repository

Link: https://git.ece.iastate.edu/sd/sdmay22-17/

8.2 Python tokenizer:

The original Python Tokenizer already does a great job of tokenizing python source code and
assigning labels, but we needed to modify it. We added our own labels, and altered the code to
apply those new labels. Our added labels include: KEYWORD, PRINT, WHITESPACE, COND,
COND_BLOCK, WHILE, WHILE_BLOCK, FOR, FOR_BLOCK.

KEYWORD identifies the reserved python keywords. PRINT identifies the common print
statements. For example print(“Hello, World!”). WHITESPACE is used as a catchall for
any whitespace characters that did not already have a specific label. COND is used to identify
if, elif, and else statements. COND_BLOCK is used to identify entire conditional blocks,
including everything from the conditional (if, elif, else) to the ending bracket. WHILE
identifies the while keyword, and WHILE_BLOCK identifies while-loop blocks, similar to the
conditional blocks. FOR and FOR_BLOCK behave in a similar way for the for keyword.

The Python Tokenizer was altered so that tokens that fit these new labels will receive the new
labels instead of receiving the NAME label. The NAME token is a catch-all token for most
variable, class, and function names. If we wanted to add even more specific labels, the best way
to do so is to modify how the tokenizer applies the NAME label.

Now that we have a tokenizer to generate our labels, we need to actually use it on our raw data.
Our raw data was a software documentation file that contained both python source code and
natural language in the form of comment blocks. Running the Python Tokenizer on this file is a
simple task.

https://git.ece.iastate.edu/sd/sdmay22-17/
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The file must be fed into a buffer, which will allow the tokenizer to generate tokens. We used the
array allTokens to remember. Using those tokens, however, is not straightforward. The tokenizer
saves them as a custom class with all identifying information including the token label, id, the
line it appears on, and the start and end locations. While this is all very nice to know, tuples are
difficult to work with. To combat this issue, we created two classes that define our own token
types.

The MyToken class contains all the identifying information in easy to manipulate strings. The
shortToken class contains only the id, label, and text-string which is all we need for the
CodeBERT model.
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The next part of this process was to remove any duplicate label and text pairs. To train the model,
we only needed each token to appear once. For example, we did not need to include every single
“\n” text with the associated NEWLINE label. We only needed the unique tokens.

Next, split each token into its label and text. Write these tokens to arrays and files that can be
loaded into CodeBERT.
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Finally, create the datasets for use with CodeBERT. It is required that there is a column for
strings, the labels, and a unique id for each item.

Then split the dataset into testing and training datasets.

8.3 CodeBERT:

RobertaTokenizer: The RobertaTokenizer is the tokenizer designed for use with CodeBERT. This
tokenizer will generate the necessary inputs that the trainer will need to train the model. This
includes the input_ids and attention_mask attributes.
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Model: This is the code used for loading in your most recent model. When creating the model
object we need to specify the number of labels we have. We have 74 tags, as shown below in our
Final POS tags table.

Trainer: Here you set up the trainer object and pass in the dataset and model created above.
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8.4 Evaluation:

The trainer.evaluate() will give you the metrics for the test data that you passed into the trainer.
We were able to get an evaluation accuracy of 84%

8.5 Final POS tags

Tag ID Example

ENDMARKER 0 (EOF marker)

NAME 1 var_name

NUMBER 2 54

STRING 3 “your-string-here”

NEWLINE 4 \n

INDENT 5 \t (tab space)

DEDENT 6 (identifies when a new line
has removed an indent
compared to the previous
line)

LPAR 7 (

RPAR 8 )

LSQB 9 [

RSQB 10 ]

COLON 11 :



21

COMMA 12 ,

SEMI 13 ;

PLUS 14 +

MINUS 15 -

STAR 16 *

SLASH 17 /

VBAR 18 |

AMPER 19 &

LESS 20 <

GREATER 21 >

EQUAL 22 =

DOT 23 .

PERCENT 24 %

LBRACE 25 {

RBRACE 26 }

EQEQUAL 27 ==

NOTEQUAL 28 !=

LESSEQUAL 29 <=

GREATEREQUAL 30 >=

TILDE 31 ~

CIRCUMFLEX 32 ^

LEFTSHIFT 33 <<

RIGHTSHIFT 34 >>

DOUBLESTAR 35 **

PLUSEQUAL 36 +=
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MINEQUAL 37 -=

STAREQUAL 38 *=

SLASHEQUAL 39 /=

PERCENTEQUAL 40 %=

AMPEREQUAL 41 &=

VBAREQUAL 42 |=

CIRCUMFLEXEQUAL 43 ^=

LEFTSHIFTEQUAL 44 <<=

RIGHTSHIFTEQUAL 45 >>=

DOUBLESTAREQUAL 46 **=

DOUBLESLASH 47 //

DOUBLESLASHEQUAL 48 //=

AT 49 @

ATEQUAL 50 @=

RARROW 51 ->

ELLIPSIS 52 …

COLONEQUAL 53 :=

OP 54 >>

AWAIT 55 await

ASYNC 56 async

TYPE_IGNORE 57 type: ignore

TYPE_COMMENT 58 (identify type comment)

SOFT_KEYWORD 59 case

ERRORTOKEN 60 ‘Single quote is not closed

COMMENT 61 # python comment line
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NL 62 (used when a logical line of
code is continued over
multiple lines)

ENCODING 63 (indicates the encoding used
to decode the source bytes)
utf-8

N_TOKENS 64 Returns number of tokens

KEYWORD 65 (python keywords)
and, break, class, True, etc.

PRINT 66 print(“Hello, World!”)

WHITESPACE 67 (catch-all for miscellaneous
whitespace characters)

COND 68 if, elif, else

COND_BLOCK 69 if (){ … }

WHILE 70 while(...)

WHILE_BLOCK 71 while(...) {...}

FOR 72 for()

FOR_BLOCK 73 for(...){...}


